WS2812B-V6 智能外控集成 LED 光源

主要特点

- IC控制电路与LED点光源共用一个电源。
- 控制电路与RGB芯片集成在一个5050封装的元器件中,构成一个完整的外控像素点。
- 内置信号整形电路,任何一个像素点收到信号后经过波形整形再输出,保证线路波形畸变不会累加。
- 内置上电复位和掉电复位电路。
- 每个像素点的三基色颜色可实现256级亮度显示,完成16777216种颜色的全真色彩显示。
- 端口扫描频率2KHz。
- 串行级联接口,能通过一根信号线完成数据的接收与解码。
- 当刷新速率30帧/秒时,级联数不小于1024点。
- 数据发送速度可达800Kbps。
- 光的颜色高度一致,性价比高。
- 具有电源反接不会损坏。
- 外围不需要包含电容在内的所有任何电子元器件。
- 双向信号输入, DI、DO可任意切换。
- 静态功耗低于1 µ A, 支持3.3V供电。

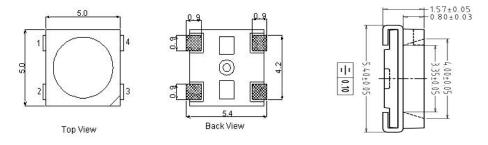
主要应用领域

- 消费性电子产品领域。
- LED灯饰亮化领域。
- 电脑及周边设备\游戏设备\各种电器设备领域。

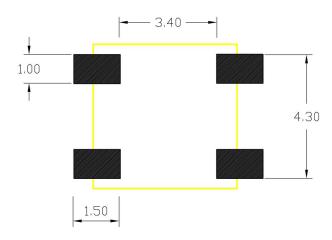
产品概述

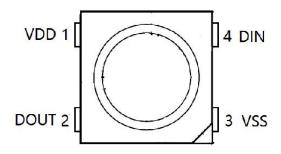
WS2812B-V6是一个集控制电路与发光电路于一体的智能外控LED光源。其外型与一个5050LED灯珠相同,每个元件即为一个像素点。像素点内部包含了智能数字接口数据锁存信号整形放大驱动电路,还包含有高精度的内部振荡器和可编程定电流控制部分,有效保证了像素点光的颜色高度一致。

数据协议采用单线归零码的通讯方式,像素点在上电复位以后,DIN端接收从控制器传输过来的数据,首先送过来的24bit数据被第一个像素点提取后,送到像素点内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的像素点,每经过一个像素点的传输,信号减少24bit。像素点采用自动整形转发技术,使得该像素点的级联个数不受信号传送的限制,仅受限信号传输速度要求。


高达2KHz的端口扫描频率,在高清摄像头的捕捉下都不会出现闪烁现象,非常适合高速移动产品的使用。

280 us以上的RESET时间,出现中断也不会引起误复位,可以支持更低频率、价格便宜的MCU。


LED具有低电压驱动、环保节能、亮度高、散射角度大、一致性好、超低功率及超长寿命等优点。将控制电路集成于LED上面,电路变得更加简单,体积小,安装更加简便。


机械尺寸(单位mm)

推荐焊盘尺寸(单位: mm)

引出端排列

引脚功能

序号	符号	管脚名	功能描述
1	VDD	电源	供电管脚
2	DOUT	数据输出	控制数据信号输出,输入输出信号任意对调,不分方向
3	VSS	地	信号接地和电源接地
4	DIN	数据输入	控制数据信号输入,输入输出信号任意对调,不分方向

最大额定值(T_A=25℃,V_{SS}=0V)

参数	符号	范围	单位		
电源电压	V_{DD}	+3.3~+5.3	V		
逻辑输入电压	V_{I}	-0.3V∼VDD+0.7V	V		
工作温度	Topt	-40∼+85	°C		
储存温度(散料)	Tstg	-40~+105	°C		
储存温度(整卷)	Tstg	-40~+70	°C		

电气参数(T_A=25°C, V_{DD}=5V, V_{SS}=0V**)**

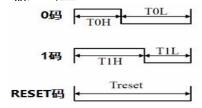
参数	符号	最小	典型	最大	单位	测试条件
输入电流	$I_{\rm I}$			±1	μΑ	$V_{I}=V_{DD}/V_{SS}$
高电平输入	V_{IH}	0.55VDD		VDD+0.7V	V	D _{IN} , SET
低电平输入	$V_{\rm IL}$	-0.3V		0.7V	V	D _{IN} , SET

开关特性 (T_A=25°C, V_{DD}=5V, V_{SS}=0V)

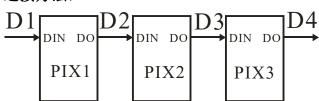
参数	符号	最小	典型	最大	单位	测试条件
传输延迟时间	t_{PLZ}			300	ns	CL=15pF,DIN→DOUT,RL=10KΩ
下降时间	t _{THZ}			120	μs	CL=300pF,OUTR/OUTG/OUTB
输入电容	C_{I}			15	pF	

LED 特性参数(T_A=25°C, V_{DD}=5V, V_{SS}=0V**)**

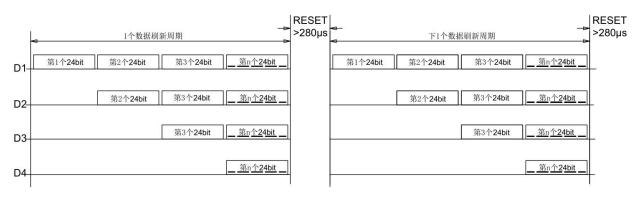
参数	符号	颜色			测试条件 DC=5V			
			最小值	典型值	最大值	单位	工作电流	
42 1/		Red	300	310	500			
发光 强度	IV	Green	600	780	1000	mcd	12mA	
)出/文		Blue	200	215	300			
		Red	620	621	630			
波长	λd	Green	515	520	525	nm	12mA	
		Blue	465	471	475			



数据传输时间


ТОН	0 码,高电平时间	220ns~380ns
T1H	1码,高电平时间	580ns~1μs
TOL	0码,低电平时间	580ns~1μs
T1L	1码,低电平时间	580ns~1μs
RES	帧单位,低电平时间	280μs 以上
T _{DATA}	数据周期	≥1.25us

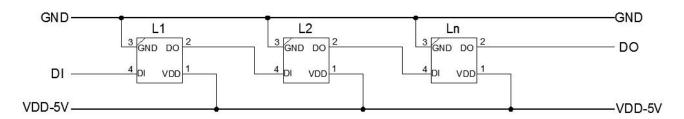
时序波形图



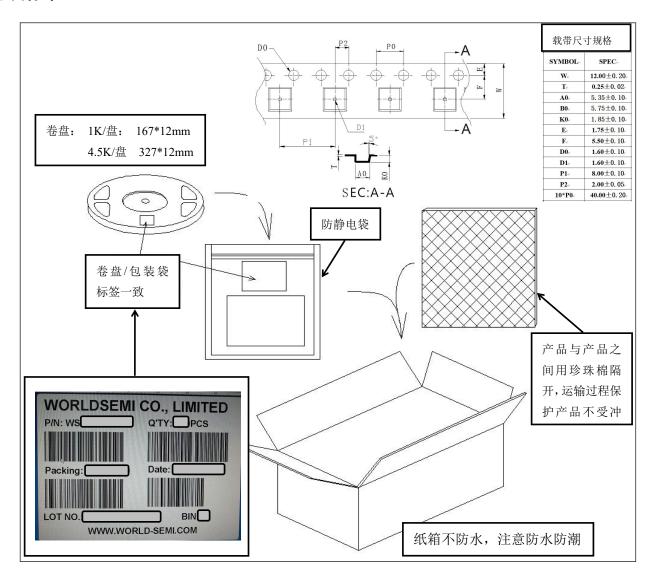
连接方法:

数据传输方法

注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。


24bit 数据结构

_																								
	G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	В7	В6	В5	В4	ВЗ	B2	В1	В0
	G/	00	0.5	UT.	03	02	O1	GU	IC/	RO	ICS	104	KS	IX2	IXI	ICO	D/	В	DJ	דע	D 3	152	וטו	D ₀


注: 高位先发, 按照 GRB 的顺序发送数据。

典型应用电路

包装标准:

表面贴装型 LED 使用注意事项

1. 描述:

通常 LED 也像其它的电子元件一样有着相同的使用方法,为了让客户更好地使用华彩威的 LED 产品,请参看下面的 LED 保护预防措施。

2. 注意事项:

2.1. 灰尘与清洁

LED 的表面是采用改性环氧胶封装的,环氧胶对于 LED 的光学系统和抗老化性能都起到很好的保护作用。环氧胶易粘灰尘,保持作业环境的洁净。当 LED 表面有一定限度内的尘埃,也不会影响到发光亮度,但我们仍应避免尘埃落到 LED 表面。打开包装袋的就优先使用,安装过 LED 的组件应存放在干净的容器中,在 LED 表面需要清洁时,如果使用三氨乙烯或者丙酮等溶液会出现使 LED 表面溶解等现象,不可使用具用溶解性的溶液清洁 LED,可使用一此异丙基的溶液,在使用任何清洁溶液之前都应确认是否会对 LED 有溶解作用;请不要用超声波的方法清洁 LED,如果产品必须使用超声波,那么就要评估影响 LED 的一些参数,如超声波功率,烘烤的时间和装配的条件等,在清洁之前必须试运行,确认是否会影响到 LED。

2.2. 防潮包装

LED 属于湿敏元件,将 LED 包装在铝膜的袋中是为了避免 LED 在运输和储存时吸收湿气,在包装袋中放有干燥剂,以吸收湿气。如果 LED 吸收了水气,那么在 LED 过回流焊时,水气就会蒸发而膨胀,有可能使胶体与支架脱离以及损害 LED 的光学系统。由于这个原因,防湿包装是为了使包装袋内避免有湿气,但通常保护时间仅能维持 1~2 个月。此款产品防潮等级 (MSL)为: 5a. SMT 时请参照 IPC/JEDECJ-STD-020 规定的材料防潮等级 (MSL) 定义进行 MSL 管控。

	包装拆封后车间寿命					
防潮等级	时间	条件				
LEVEL1	无限制	≤30°C/85%RH				
LEVEL2	1年	≤30°C/60%RH				
LEVEL2a	4周	≤30°C/60%RH				
LEVEL3	168 小时	≤30°C/60%RH				
LEVEL4	72 小时	≤30°C160%RH				
LEVEL5	48 小时	≤30°C/60%RH				
LEVEL5a	24 小时	≤30°C/60%RH				
LEVEL6	取出即用	≤30°C/60%RH				

- 2.3 SMT 贴片说明:
- 2.3.1 LED 在 SMT 前拆袋,整卷放入烤箱中进行除湿干燥(70~75℃烘烤≥24H);
- 2.3.2 产品从烤箱中取出至高温焊接完成(包含多次回流焊、浸锡、波峰焊、加热维修等高温操作/作业),时间段控制在 24H 内(在 T<30℃, RH<60%条件下);
 - 2.3.3 LED 贴件在印刷锡膏后的 PCBA 上,应尽快完成 SMT,建议不超过 1H;
- 2.3.4 生产剩余、机台抛料、维修用料等散料 LED,若长时间暴露在空气中,不可直接使用,建议进行除湿干燥后再被使用。整卷烘烤: $70\sim75$ \mathbb{C}^* ≥ 24H 或 散料烘烤: 120 \mathbb{C}^* 4H。

3. 焊接

表贴应用 LED 应符合 JEDECJ-STD-020C 标准,作为一般指导原则,建议遵循所用焊锡膏制造商推荐的焊接温度曲线,或使用我司如下推荐的焊接温度曲线。

温度曲线描述	范围
30℃~150℃预热斜率	1~4 ℃/s
30℃~150℃预热时间	60∼120 s
150℃~200℃恒温斜率	0~3 ℃/s
150℃~200℃恒温时间	60∼120 s
液相温度	217℃
峰值温度	245℃
回流焊斜率	0~3 ℃/s
回流焊时间	45-90 s
降温速率	-4~0 ℃/s
室温至峰值温度停留时间	<6 min

注: 1. 以上所有温度是指在封装本体上表面测的温度

4. 产品配装过程注意事项

1. 通过使用适当的工具从材料侧面夹取	2. 不可直接用手或尖锐 金属压胶体表面,它可能 会损坏内部电路	3. 不可将模组材料堆积在一起,它可能会损坏内部电路	4. 不可用在 PH<7 的酸性场所
			(PM7)

WS2812B-V6 智能外控集成 LED 光源

文件更改记录

版本号	状态	修改内容概要	修订日期	修订人	批准人
V1.0	N	新建	20250929	何文镔	尹华平
V1.1	M	细节参数修正	20251021	陈永昭	尹华平